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Summary. A partitioning of the ab initio total energy into one-center and two- 
center terms is proposed. The partitioning scheme is developed using the auxiliary 
function/~(2, l; 1, 2) = 7(2, 1)7(1, 2) and the topological theory of atoms in mole- 
cules. It is shown that this scheme can be used at theoretical levels beyond 
Hartree-Fock. The numerical results indicate that the two-center terms follow the 
experimental trend of the dissociation energies for a series of related compounds. 
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1 Introduction 

The theory of atoms in a molecule developed by Bader et al. [1-3] has been used 
extensively since it first appeared in the literature. This theory has the advantage 
that the interactions of the atoms in a molecule can be properly described without 
using artificial orbital localization schemes. Fundamental chemical concepts, such 
as the Lewis acid-base model, can be extracted from this theory. Useful chemical 
concepts such as Fukui indices, covalent bond orders and atomic valence indices 
have recently been developed by Cioslowski et al. [4, 5] and by Mayer et al. [6]. 

Mayer et al. [6] have developed a method for determining bond orders and 
atomic valence indices in the context of the topological theory. Their numerical 
results are in quite good agreement with those obtained by Cioslowski's approach 
[4]. The starting point in Mayer's formalism is the second-order density matrix 
from which not only bond orders but also the diatomic interaction energy can be 
obtained. 

The idea of partitioning the total energy into one- and two-center terms was 
developed in the early semi-empirical methods as a tool for analysing chemical 
bonds. Ruedenberg [7] carried out an analysis of the energy of the molecular 
system using density matrices. Pople [8] pointed out, in the context of the 
seam-empirical CNDO method, that the total energy of a molecular system can 
be expressed exactly in one- and two-center terms, since in the semi-empirical 
methodologies the three- and four-center integrals do not exist. Clementi [9] and 
Fischer [10] proposed that the two-center energy components are related to the 
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strength of a chemical bond. Since different approximations are used in the 
semi-empirical methods there is no unique scheme for the energy partition, and 
several partitioning schemes have been proposed in the literature depending on 
the nature of the semi-empirical method employed. Fischer and Kollmar [-10] 
developed an energy partitioning scheme for CNDO,  Dewar [-11] for the M I N D O  
method and Ruette et al. [12] for the MINDO/SR approach. 

Kollmar [13] developed a partitioning scheme for the ab initio Hart ree-Fock 
energy, based on a partition of the Hilbert space spanned by the atomic basis 
functions. Unfortunately, different values for the one- and two-center terms are 
obtained depending on whether a non-orthogonalized or an orthogonalized basis 
set is used. All these schemes (ab initio or semi-empirical) are based on the attractive 
idea that the total energy of a molecule can be decomposed as a summation of 
monoatomic (one-center) and diatomic (two-center) terms, and that the two-center 
terms can be related to the strength of the chemical bonds. 

One of the drawbacks of such partitioning of the total energy is the fact that 
they are not invariant under a unitary transformation of the basis set. On the other 
hand, in the framework of the topological theory, the molecular properties are 
defined in such a way that they are invariant under a unitary transformation. The 
aim of this work is to develop a partitioning scheme in the spirit of the topological 
theory of atoms in molecules. For  this purpose we have developed equations to 
obtain the diatomic interaction energies within the framework of Bader's theory of 
atoms in a molecule. The new definitions for the one- and two-center terms could, 
in principle, be used not only at the Har t ree-Fock level but also with correlated 
ab initio methods. It will be shown that within the same level of approximation 
(HF or MP2) the numerical results are consistent. 

2 Theory 

One begins with the first-order density matrix ?(1, 2) written in terms of the canoni- 
cal or natural spin orbitals, Oi(x, s) = 4)i(x)a(s), and the occupation numbers 2i(~) 
and 2i(fl) for c~ and fl electrons: 

7(1, 2) = ~ 2~(~)~b~(1, cx)q/*(2, .) + 2i(fl)~bi(1, fi)¢~(2, fl). 
i 

(1) 

From Eq. (1) the auxiliary function/~(2, 1; 1, 2) = 7(2, 1)7(1, 2) can be constructed, 
which was proposed by Mayer et al. [-6] as the starting point in their definition 
of bond order. Integration of the function/2 carried out over the spatial and spin 
coordinates, dX1 = dx~dsl, gives for a Har t ree-Fock single-determinant wave 
function the total number of electrons N: 

N = f f d X  1 dX2/[(2, 1; 1, 2). (2) 

In case of a single-determinant wave function, /~ is the exchange part of the 
second-order density matrix. As shown by Bader [3], the double integration of/~ in 
a given atomic basin determines in this case the extent to which electrons are either 
localized or delocalized in the basin. Note that in the case of a correlated wave 
function the integration does not give N. Now consider the Laplacian of the 
electron density of a Har t ree-Fock  wave function, which is related to the function 
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/~ by means of the equation 

1 g2p(1) lfdsldX2V2L(2,1;1,2). 
4 

It follows that 

(3) 

and 
( ,  

V(A) = J dXl V (1). (11) 
da A 

The integration is carried out over the atomic basin of atom A. In order to calculate 
the diatomic interaction energies, Eq. (9) is taken as the starting point. Using Eq. (7) 
and integrating over the atomic basis of atom A one obtains for the kinetic energy 
of atom A, 

f[a A dxlK(1) = -- ~lf~ A dXIB~ fn B dX27(l' 2)V27(2' 1). (12) T(A) = K(A) = 

fdxt dX2 V2L(2, 1; 1, 2) = 0. (4) 

From the definition of/~ and Eq. (4), the following identity can be obtained: 

~ff l f f  dX1 dX2 V~7(1, 2) V,7(2, 1) = -- ~ dX1 dX217(2, 1) V127(1, 2) + 7(1, 2) V2~(2, 1)]. 

(5) 

The two sides of Eq. (5) are equivalent expressions for G(1) and K(1) of the 
electronic kinetic energy: 

G(1) = ~ dsl dX2 VI7(1, 2) V17(2, 1), (6) 

K ( 1 ) = - ~  dsldXi[?(2,1)VfT(1,2)+~(1,2)V~?(2,1)]. (7) 

Here G(1) and K(1) are used in the same way as in the theory of atoms in molecules, 
where it is shown that the integration of G(1) and K(1) gives identical values if the 
integration is carried out in the space of the atomic basins as well as in the total 
space [1, 3]. In Bader's theory the electronic potential energy density V(r) can be 
expressed, for a stationary state, in terms of the Laplacian of the electronic density 
and the kinetic energy density G(r). Using Eqs. (3), (6) and the local form of the 
virial theorem [1, 3], the electronic potential energy density can be written as 

V ( 1 ) =  4fdsl dX2 V~/=(2, 1; 1, 2 ) -  fdsl dX2 V,,(1, 2)V,,(2, 1). (s) 

In the theory of atoms in a molecule the electronic energy, E(A), of an atom A in 
a molecule in its ground-state equilibrium geometry, is written as 

E(A) = T(A) + V(A), (9) 

where 

T(A) = K ( A ) =  ~ dxlK(l)  = G(A)=  ~ dxlG(1) (lO) 
Ja A ~JI2A 
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To simplify the notation let us introduce the following definition which holds for 
Har t ree-Fock  and correlated wave functions: 

r/ij = 2i(~)2j(~) + 2i(fl)2j([3). (13) 

Using Eqs. (1), (t2) and (13), T(A) can be written as 

T ( A ) =  ~-~lij(?pi]V2dpj>A((ail~pj>.. (14) 

In a similar way, an equation for the electronic potential energy density of atom A 
V(A) can be derived using Eqs. (1), (8) and (11): 

v(a)=~Bi~j11~ij[<~)ilgZ¢j>A--<g¢ifg¢j>A]<¢iI¢j>B . (15) 

Let us now introduce two more definitions: 

2~,j(A) = - ) (~bl1172~bj>A (16) 

and 

17,j(A) = ~[<~,1 ~72~j>A -- < ~7~il ~7(~j>A]" (17) 

Using Eqs. (16) and (17), the electronic energy of an atom in a molecule can be 
written as 

E(A) = ~ r h j ( T ~ j ( A )  + 17,~(A))(~b,I q~j>B = ~ ~ rhflT,j(A)&j(B), (18) 
B i ,  j B i , j  

where 

and 

Ti~(A) + V~j(A) = EIj(A) (19) 

/ .  
&j(B) = JoB d V ¢~i* (r) d)j(r) (20) 

In order to calculate the diatomic interaction energy, Eq. (18) must be split into 
monoatomic and diatomic terms: 

E(A) = ~lijff<j(A)Sij(A) + ~ ~rhjff, ij(a)sij(B). (21) 
i , j  B ~ A i ,  j 

The first term in Eq. (21) is a one-center or monoatomic term and contains 
only those contributions to the energy due to an atom interacting with its own 
electrons: 

eA = ~ r/J~,j(A)SIj(A). (22) 
i , j  

The energy eA is related to the energy change of atom A when it is bonded to other 
atoms. If we have only one isolated atom, Eq. (22) is the total energy of the atom. 

The second term in Eq. (21) is a two-center term and gives the interaction energy 
of the electrons with atom A, weighted by the molecular overlap of the atom B. In 
order to obtain a diatomic interaction energy which is related to two centers, it is 
necessary to add the weighted interaction energy of the electrons with the second 
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center (atom B). Therefore, the diatomic interaction energy between atom A and B, 
DIAB, is defined as 

DIAB = ~ l~ijl~ij(A)Sij(B ) -I- 2 tlijEij(B)Sij(A). (23) 
i , j  i , j  

The total Har t ree-Fock  energy (ET) of a molecule is therefore given by 

ET = 2 E ( A )  = 2eA + 2 ~ DIAB. (24) 
A A A B > A  

It is important  to point out that, even though Eqs. (14) and (15) hold only for a 
Har t ree -Fock  wave function, the definitions given by Eqs. (22) and (23) could, in 
principle, be used with correlated wave functions provided that the sum of the one- 
and two-center terms gives the total energy of the system. 

Molecules containing only two atoms constitute a special case. Since it is 
possible to derive an equation for the bond energy of the molecule using the 
diatomic interaction term, the binding energy BE of a diatomic molecule AB is then 
given by 

BE = ET -- eAO -- eB0 + ZPE = DIAB + eA + eB -- eAO -- eB0 + ZPE. (25) 

Here CA0 and eB0 are the total energies of the free atoms A and B. ZPE is the 
zero-point vibrational energy of the molecule. 

3 Methodology 

All calculations were performed at the HF level of theory using Gaussian 92 [14]. 
For  the diatomic molecules, geometry optimizations were also carried out at the 
MP2 level. The atomic overlap matrices, as well as all other atomic integrals, were 
done using the programs EXTREME and PROAIM [15]. For  H, C, N, O and F 
a 6-31G* basis set [16] and for P a 6-311G** basis set [17] were employed. In the 
case of diatomic molecules, the 6-311G** basis sets [17] were used. Effective Core 
Potentials (ECP) from Stoll et al. [-18] with an uncontracted (1111/11111/1) valence 
basis sets were used for C1, Br and I, unless other contraction schemes be specified. 
The atomic orbital exponents of the C1 atom were optimized in order to obtain 
better values for the Clz molecule. The original set of exponents presented difficul- 
ties when the dissociation energy was calculated. The new set of exponents (basis 
set B) is reported in Table 1 together with the original values (basis set A). No 
optimization was done for the most diffuse p and d functions. The covalent bond 
orders were calculated using the Angyan, Loos and Mayer formalism [6]. 

4 Results and discussion 

In Table 2 we report  the numerical values of the diatomic bond properties of C2Hn 
(n = 2, 4, 6), as well as for N2X4 (X = H, O and F) compounds. The DIAB values 
follow the same trend as the bond orders and the experimental binding energies. 
The high absolute values for DIAB are due to the fact that these terms are related to 
the total energy of the molecule which is quite high. According to Eq. (24), the DIAB 
term is that part of the total molecular energy which is distributed into the bond. 
Since different molecules have different total energies but may have similar binding 
energies, the numerical values of DIAB can be used in a comparative way only. For  
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Table 1. Exponents for the C1 atomic basis 

Original basis set A Optimized basis set B 

s-type 
14.0730760000 13.9997243570 
2.3315650000 2.2988888732 
0.5071000000 0.5346775169 
0.1824330000 0.1959095423 

p-type 
3.3531290000 2.7276884237 
0.7856860000 1.2865793960 
0.2674540000 0.5647098646 
0.0782750000 0.2647896940 
0.0154770000 0.0154770000 

d-type 
0.5000000000 0.5000000000 

Table 2. Diatomic properties at the HF/6-31G** level. Values at MP2/6-31G** are given in paren- 
theses. Bond distance (RA~), Bond order (BAB), Diatomic interaction energy (DIAB) and experimental 
binding energy (BE) 

Molecule Bond RAP, BAB DIA8 Experimental 
A B  [Angs.] [au] BEgs" 

[kcal/mol] 

C2H2 C-C 1.186 (1.186) 2.863 (2.712) -3.838 (-3.656) 230 
C-H 1.057 (1.057) (0.979) (0.972) --0.994 (-0.962) 

C2H4 C-C 1.317 (1.317) 1.889 (1.828) --2.575 (--2.487) 173 
C-H 1.075 (1.075) 0.982 (0.965) --0.995 (--0.957) 
H-H 1.829 (1.829) 0.040 (0.037) --0.043 (-0.041) 

C2H 6 C-C 1.540 (1.540) 0.997 (0.966) -- 1.355 ( -  1.314) 88 
C-H 1.085 (1.085) 0.968 (0.956) --0.987 (--0.953) 
H-H 1.746 (1.746) 0.047 (0.042) -0.035 (-0.033) 

N2 H4 N-N 1.4t0 1.227 - 2.3 t3 59.03 
N-H 0.985 0.780 - 0.944 
H H  1.731 0.018 --0,023 

N2F~ N-N 2.249 0.748 - 1354 21.03 
N-F 1.313 1.0678 -2.691 
F-F 2.050 0.158 - 0.756 

N204 N-N 1.580 0.700 ~- 1.166 13.70 
N-O 1.166 1.732 -- 3.976 
O-O 2.139 0,333 - t.179 

Experimental values fi'om Ref. [19] 

e x a m p l e ,  t he  DIAB v a l u e  for  the  N N b o n d  in N z F 4  is e q u a l  to  the  DIAi~ va lue  for  
C - C  in C 2 H 6 ,  b u t  t he  e x p e r i m e n t a l  b i n d i n g  energ ies  a r e  qu i t e  different .  F o r  a series 
of  r e l a t ed  c o m p o u n d s  such  as C z H ,  (n = 2, 4, 6) o r  N z X  , (X = H,  F,  0 )  the  DIAB 
t e rms  s h o w  the  s a m e  o r d e r  as the  b i n d i n g  energies .  
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Table 3. Diatomic properties for polyatomic molecules at the HF  level. Bond distance (RAB), Bond 
order (BAB), diatomic interaction energy (DIAB) and experimental binding energies (BEy 

Molecule Bond A - B  RAB [Angs.] BAB DIAB [-au] Experimental BEAB u 
[kcal/mol] 

HzO H - O  0.943 0.623 --0.927 
H - H  1.506 0.007 --0.012 

PCI3 P-C1 2.116 0.891 -- 1.295 
C1-CI 3.244 0.142 -0 .213  

PBr3 P - B r  2.280 0.980 - 1.226 
Br-Br  3.523 0.147 --0.1823 

PI3 P - I  2.530 1.08I - 1.110 
I- I  3.946 0.141 -0 .141  

H C N  N - C  1.133 2.232 -3 ,865  
C - H  1.059 0.923 -0 .957  
N - H  2.192 0.087 -0 .127  

TS N - C  1.169 1.857 - 3.344 
C - H - N  C - H  1.152 0.503 - 0.498 

N - H  1.468 0.492 -0 .486 

C N H  N - C  1.155 1.675 - 3 . 0 1 4  
C - H  2.I38 0.021 --0.048 
N - H  0.984 0.649 -0 .825 

119 

78 

63 

44 

a Basis set: H, C N and O 6-3 t G**, P 6-311G*, C1 (basis set A), Br and 
from Ref. [18] 
b Experimental values from Ref. [,19] 

I (3 t/311/1) valence basis set ECP 

In addition to testing the DIAB values at the H F  level, we also consider its 
application at the correlated MP2 level (see Table 2). The calculations were carried 
out using the same geometries as those obtained at the H F  level. When correlated 
wave functions are used, the bond orders tend to decrease. This result was 
previously reported [6] for the N2 molecule. This decrease is also observed for the 
diatomic interaction energy. Nevertheless, the order is the same as at the HF level, 
i.e. DIcc(CzH2) > DIcc(C2H,~) > DIcc(CzH6). This result shows that the DIAB 
values calculated at a correlated level can be used with a certain confidence, taking 
into account that in the correlated case the function/~ (2, 1; 1, 2) is an auxiliary 
function that has no direct physical meaning. 

The order of the DIA~ values correlates for a related set of molecules with the 
experimental bond energies better than the bond orders. This becomes obvious 
from the calculated results for PX3 (Table 3). The bond orders BAB increase from 
PCla < PBr3 < PI3, while the DIAB values and the P-X bond energies show the 
reverse trend. The diatomic interaction energies depend on the atoms involved in 
the interactions much more than the bond orders do. Table 3 shows that the BAB 

values for the halogen-halogen interactions are very similar, while the DIAB values 
are quite different. It is not possible to compare the magnitude of DIAB for quite 
different molecules. For  example, the energy for the P - I  bond (Dlpl = - 1.110) is 
higher than the corresponding value of H - O  (DIHo = -- 0.927) in H20,  but the 
bond energy for P- I  is lower than for H-O.  
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In order to test the capability of the DIAa values to describe chemical changes 
during a chemical reaction, the proton transfer reaction from HCN to CNH was 
studied. Table 3 shows that the DIcH values become smaller from the initial state 
(HCN, DIcH = --0.957) to the final state (CNH, DIcH = --0.048), reaching 
a mean value of -0 .498  in the transition state (TS). On the other hand, the DINH 
value increases from -- 0.I27 to -- 0.825. The DIxn (X = C, N) value decreases as 
the distance RxH increases. The DIcc values show that the interaction between 
C and N atoms is a minimum in the CNH molecule. This is reasonable, because in 
CNH there is only a carbon-ni trogen double bond, while in HCN there is a triple 
bond. These results demonstrate that the diatomic interaction energies (DIAB 
values) are capable of describing the chemical changes along a reaction path in 
a reasonable way. 

Table 4 shows that the one-center energy values (eA) are lower in absolute value 
than Bader's atomic values, because Bader's term includes not only the atomic 
energy, but  also part  of the interatomic interaction energy. Table 4 shows that there 
is a strong loss of energy of the atoms (Ae > 0; Ae = eA - -  e A O )  when they form 
molecules. This is the reason why the DIcc(C2H6) and DINN(N2F4) values are 
equal, while the binding energies are quite different (see Table 2). The energetic 
change of the N atom when forming the N2F4 molecule (Ae = 4.072) is greater than 
the change that takes place at the C atom (Ae = 2.961) for the formation of the C2H6 
molecule. Since the binding energy is a global value that involves not only the 
breaking of the bonds but the necessary energy to bring the atoms from the initial 
electronic state to the final electronic state (ground-state free atoms), these changes 
have to be taken into account. For comparison, the MP2 values are included in 
Table 4. Although the magnitudes of eA(MP2) and ~A0(MP2) are greater than the 
corresponding HF values, the difference between them (Ae) is not very large. 

Table 5 shows that in the PX3 (X -- C1, Br, I) series, the halogen atoms lose 
energy (eA > eAO) while the P atom gains energy (eA > eA0). It is interesting to note 
that while Bader's atomic energies for the carbon atom in HCN and CHN (TS) are 
quite similar, the eA are different. The eA value for the C atom in the TS is higher in 
magnitude than in the HCN molecule, because the loss of the diatomic interaction 
energy (see Table 3) of the C-H and C-N moieties is partially gained by the C atom. 
This type of interaction cannot be described using Bader's atomic energies, because 
they include not only the atomic energy but also part of the interaction energy. 

Finally, in Table 6 we report numerical results for some diatomic molecules 
optimized at the HF  and MP2 levels. The calculated binding energies, BE, include 
the ZPE  corrections which are listed in Table 7. At the MP2 level the calculated 
binding energies are closer to the experimental values than the HF values. It is 
interesting to note that in some cases the magnitude of DIAB(MP2) is lower than 
the magnitude of DIAB(HF), although the BE values at MP2 are always higher 
than the BE values calculated at the HF  level (see Table 6). This comes from the 
simultaneous change of the interaction energies DIAB and the atomic energy values 
(see Eq. (25)). 

5 Summary and conclusion 

We summarize the features of this work as follows: 
(A) The total Har t ree -Fock  energy of a molecule can be written as 

A A B > A  
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Table 5. Atomic properties for some polyatomic molecules at the HF  leveP. Atomic net charge (Qa), 
atomic valence index (Va), monoa tomic  energies (ea). Bader's energies and free a tom energies (ego) 

Molecule Atom QA I/'a eA Bader's eao 
A atomic 

energy 

H 2 0  O --1.239 1.246 --74.0477 -75 .3346 -74 .7790  
H + 0.620 0.630 - 0.0549 - 0.3445 -- 0.4983 

PCI~ P + 1.470 2.674 -- 363.6784 -- 366.4058 -- 340.7073 
CI -0 .488  1.178 -5 .6097  -6 .2055  -14 .7309 

PBr3 P + 1.137 2.939 -362.5872 -365.2554 -340.7073 
Br --0.379 1.274 -4 .4537 --4.9719 -- 13.1217 

PI3 P + 0.536 3.246 - 360,6644 - 363.i 811 - 340.7073 
I - 0 . 1 7 7  1.364 -3 .2920  -3 ,7234  -11.1761 

N -- 1.479 2.318 -- 53.5850 - 55.2938 - 54.3823 
H C N  C + 1.287 3.154 --34.1413 -37 .0480 -37.6771 

H +0.192 1.009 --0.2022 -0 .5353 --0.4983 

TS C - H - N  N -- 1.338 2.350 --53.5469 -55.3148 -54.3823 
C + 1.058 2.360 -34 .7857 -37 .0190 --37.6771 
H +0.282 0.996 - 0 . t 3 5 8  -0 .4610  -0 .4983 

C N H  N -- 1.813 2.324 -- 53.7803 - 55.6270 -- 54.3823 
C + 1226 1.696 -35 .1275 -36.8785 -37.6771 
H +0.587 0.670 -0 .0654  -0 .3545 -0 .4983 

" Basis set: H, C, N and O: 6-31G**, P 6-311G*, C1 (basis set A), Br and I (31/311/1) valence basis set 
ECP from Ref. [18] 

Table 6. Diatomic properties. Bond distance (RAB), bond order (BAB), diatomic interaction energy 
(DIA~), experimental and  calculated binding energies (BE) at the MP2 level s 

Molecule Bond A-B °(2) BAB DIAB [au] Calculated Experimental J "AB 

[Angs.] BE BE b 
[kcat/mol] [kcal/mol] 

H2 H - H  0.738 0.992 -0 .5750  94.30 103.25 
(0.735) (1.000) ( -0 .5662)  (76.76) 
O. 742 

N2 N N  1.120 2.834 -5 .7381 215.20 225.07 
(1.071) (3.039) ( -6 .2716)  (106.41) 
1.098 

C O  C - O  1.137 1.757 -3 .6984  255.74 256.2 
(1.040) (1.591) ( -3 .3228)  (169.37) 
1.128 

C12 CI-C1 2.010 1,276 - 3.3797 56.56 57.3 
(1.991) (1.327) (--3.0089) (24.25) 
1.988 

Br2 Br---Br 2.310 1.283 --2.9002 42.45 45.45 
(2.286) (1.338) ( -- 2. 7257) (t3.23) 
2.284 

I~ I 4  2.723 1.270 -2 .3938 35.33 35.60 
(2.695) (1.325) (--2.5016) (10.84) 
2.666 

H F  values in parentheses. Basis sets: H, N, C, O 6-311G**, Br 
ECP. C1 Basis set B. 
~' Values in italic are from ref. [19]. 

and I (1111/11111/1) valences basis set 
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where A and  B run over  a toms,  and  the DIAB term is the in te rac t ion  energy between 
a toms  A and  B. eA is the  a tomic  energy of the  a tom A. 
(B) The  in te rac t ion  energy DIAB is re la ted  to the i m p o r t a n t  chemical  concept  of 
b o n d  energy,  a lbei t  no t  direct ly.  F o r  example ,  the  b ind ing  energy for a d i a tomic  
molecules  is given by  

BE = ET - -  eAO - -  ~;BO "dv Z P E  = DIAt~ + e A  + a B  - -  ~AO - -  eBO -~- ZPE,  

where  eAo a n d  eBo are  the  to ta l  energy of the  free a toms  A and  B, and  Z P E  is the  
ze ro -po in t  v ib ra t iona l  energy. 
(C) In  the  t heo ry  of  a t o m s  in a molecule,  the to ta l  energy of a molecule  is given by 

ET = 2 EA 
A 

where  the terms EA are the a tomic  energies of the a toms  in the molecule.  I t  is no t  
poss ib le  therefore,  to k n o w  which  pa r t  of EA belongs to  the  a t o m  itself and  which 
pa r t  is re la ted  to  the  i n t e r a tomic  in terac t ions .  
(D) E q u a t i o n  (24) shows how the total energy of a given molecule  is d i s t r ibu ted  
a m o n g  a t o m s  (~A) and  a t o m  pairs  (DIAB). 
(E) The  value  of DIA~ can  be used to c o m p a r e  the  t rends  of the b o n d  s t rengths  for 
a family of re la ted  c o m p o u n d s  such as C2H,  (n = 2, 4, 6) or  N2X4 (X = O, F, H). 

Acknowledgement. We wish to express our gratitude to A. Lupinetti for critically reading the manu- 
script. 
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